
ParSy: Inspection and

Transformation of Sparse Matrix

Computations for Parallelism

Kazem Cheshmi 1, Shoaib Kamil 2,

Michelle Strout 3, Maryam Mehri Dehnavi 1

University of Toronto1, Adobe Research2, University of Arizona3

Overview

ParSy: Inspection and transformation for
parallelism

• Sympiler internals and ParSy

•H-Level inspection: The LBC algorithm

•H-Level transformation

Results

Conclusion

2

OUTLINE

Overview

ParSy: Inspection and transformation for
parallelism

• Sympiler internals and ParSy

•H-Level inspection: The LBC algorithm

•H-Level transformation

Results

Conclusion

3

OUTLINE

 Loop-carried dependences widely exist in sparse kernels such
as the sparse matrix factorization.

 Dependency analysis is difficult in sparse kernels because of
indirect memory accesses e.g., A[B[i]].

 Sparse polyhedral frameworks* typically use Wavefront
parallelism.

COMPILER LOOP PARALLELISM IN SPARSE KERNELS

4

*Strout, Hall, and Olschanowsky "The Sparse Polyhedral Framework: Composing Compiler-Generated Inspector-
Executor Code." Proceedings of the IEEE 99 (2018): 1-15.

Wavefront parallelism for sparse codes might suffer from
load imbalance and reduced locality.

LOOP PARALLELISM IN WAVEFRONT METHODS

5

The level set created by Wavefront methods for the iteration
space dependency graph of sparse Cholesky factorization.

ParSy builds a coarsened level set to improve locality while
providing a balanced enough parallelism.

LOOP PARALLELISM IN PARSY

6

Level 1

Level 2

7

CHOLESKY NUMERIC PERFORMANCE: WAVEFRONT

The blue bar shows the performance of Wavefront parallelism for selected
benchmarks.

0

100

200

300

400

500

600

700

G
FL

O
P/

s

Wavefront ParSy

8

CHOLESKY NUMERIC PERFORMANCE: WAVEFRONT

0

100

200

300

400

500

600

700

G
FL

O
P/

s

Wavefront ParSy

The red bar is the added performance from ParSy.

9

CHOLESKY NUMERIC PERFORMANCE: MKL PARDISO

The blue bar shows the performance of MKL Pardiso for selected
benchmarks.

0

100

200

300

400

500

600

700

G
FL

O
P/

s

MKL Pardiso ParSy

10

CHOLESKY NUMERIC PERFORMANCE: PARSY

0

100

200

300

400

500

600

700

G
FL

O
P/

s

MKL Pardiso ParSy

2.2X

1.3X

1.6X

1.2X 1.1X

1.7X
1.5X

1.4X

The red bar is the added performance from ParSy.

Overview

ParSy: Inspection and transformation for
parallelism

• Sympiler internals and ParSy

•H-Level inspection: The LBC algorithm

•H-Level transformation

Results

Conclusion

11

OUTLINE

 Sympiler* is a domain-specific compiler for generating high-
performance code for sparse solvers.

 It uses symbolic information to transform the sparse code.
 Sympiler does not support parallelism for multicore.

SYMPILER OVERVIEW

12
*Cheshmi, Kamil, Strout, Dehnavi "Sympiler: transforming sparse matrix codes by decoupling symbolic analysis." SC17

 Sympiler* is a domain-specific compiler for generating high-
performance code for sparse solvers.

 It uses symbolic information to transform the sparse code.
 Sympiler does not support parallelism for multicore.

 ParSy generates parallel code for sparse matrix computations.

 ParSy is built on top of Sympiler.
 However, it can also be implemented at run-time.

IMPLEMENTATION OF PARSY

13
*Cheshmi, Kamil, Strout, Dehnavi "Sympiler: transforming sparse matrix codes by decoupling symbolic analysis." SC17

14

Sparsity
Pattern

Numerical
Method

Code
Generation

Inspector-Guided
Transformations

Symbolic Inspector

PARSY (AND SYMPILER) INTERNALS

15

Sparsity
Pattern

Numerical
Method

Code
Generation

Inspector-Guided
Transformations

Symbolic Inspector

PARSY (AND SYMPILER) INTERNALS

Inputs

16

Sparsity
Pattern

Numerical
Method

Code
Generation

Inspector-Guided
Transformations

Symbolic Inspector

PARSY (AND SYMPILER) INTERNALS

Inspection of the dependence graph to create
inspection sets

17

Sparsity
Pattern

Numerical
Method

Code
Generation

Inspector-Guided
Transformations

Symbolic Inspector

PARSY (AND SYMPILER) INTERNALS

The inspection sets are used to transform the
sparse code

18

Sparsity
Pattern

Numerical
Method

Code
Generation

Inspector-Guided
Transformations

Symbolic Inspector

PARSY (AND SYMPILER) INTERNALS

ParSy introduces H-Level inspection and H-Level
transformation to generate parallel code.

Overview

ParSy: Inspection and transformation for
parallelism

• Sympiler internals and ParSy

•H-Level inspection: The LBC algorithm

•H-Level transformation

Results

Conclusion

19

OUTLINE

20

CHOLESKY FACTORIZATION

Cholesky factorization is commonly used in direct solvers and is

used to precondition iterative solvers.

The elimination tree (T) is one of the most important graph

structures used in the symbolic analysis of sparse factorization

algorithms.

21

H-LEVEL INSPECTION

Inspection Graph:
Elimination Tree

Inspection Strategy:
H-Level inspection

(Load-Balanced Level Coarsening)

Inspection Set:
H-Level set

During symbolic inspection, ParSy creates an H-Level set by
inspecting the dependence graph using the Load-Balanced Level
Coarsening algorithm. The result of inspection is the H-level set.

H-Level Set = {{{ 1, 2, 3, 4, 5 },
{ 6, 7, 8 } , { 10, 11, 9, 12 }} ;

{{ 13, 14, 15 }} ; }

22

THE LOAD-BALANCED LEVEL COARSENING (LBC)
ALGORITHM

LBC
Step 1: L-partitioning

 Find the initial cut: first l-partition
 Build the rest of the l-partitions

𝑙 = 0

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑙 = 4

𝑙 = 5

23

THE LOAD-BALANCED LEVEL COARSENING (LBC)
ALGORITHM

𝑙 = 0

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑙 = 4

𝑙 = 5

LBC
Step 1: L-partitioning

 Find the initial cut: first l-partition
 Build the rest of the l-partitions

Connected components # of cores

L2

L1

24

THE LOAD-BALANCED LEVEL COARSENING (LBC)
ALGORITHM

𝑙 = 0

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑙 = 4

𝑙 = 5

Connected components # of cores

LBC

Creates good parallelism but what
about load balance?

Step 1: L-partitioning
 Find the initial cut: first l-partition
 Build the rest of the l-partitions

L2

L1

25

THE LOAD-BALANCED LEVEL COARSENING (LBC)
ALGORITHM

LBC

win

?

?

Using a windowing heuristic the initial
cut is tuned to improve load balance.

A proportional cost model which uses
the number of participating nonzeros
in each node is used to measure load.

Step 1: L-partitioning
 Find the initial cut: first l-partition
 Build the rest of the l-partitions

26

THE LOAD-BALANCED LEVEL COARSENING (LBC)
ALGORITHM

LBC
Step 1: L-partitioning

 Find the initial cut: first l-partition
 Build the rest of the l-partitions

Level 2

Level 1

L2

L1

27

THE LOAD-BALANCED LEVEL COARSENING (LBC)
ALGORITHM

The load balance constraint ensures that
the w-partitions within a level are balanced
up to a threshold.

The space-partition constraint ensures that
threads executing iterations in different w-
partitions need not synchronize amongst
each other. W1 W2 W3

W2

LBC
Step 1: L-partitioning

 Find the initial cut: first l-partition
 Build the rest of the l-partitions

Step 2: W-partitioning
 A cost model for load balance

L2

L1

28

THE LOAD-BALANCED LEVEL COARSENING (LBC)
ALGORITHM

W1 W2 W3

LBC

Step 2: W-partitioning
 A cost model for load balance

Step 3: Reordering
 Reduce intra-partition cost.

Step 1: L-partitioning
 Find the initial cut: first l-partition
 Build the rest of the l-partitions W1

L2

L1

W-partitions with the same ID are
assigned to the same core.

29

THE LOAD-BALANCED LEVEL COARSENING (LBC)
ALGORITHM

W1 W2 W3

LBC

Step 2: W-partitioning
 A cost model for load balance

Step 3: Reordering
 Reduce intra-partition cost.

Step 1: L-partitioning
 Find the initial cut: first l-partition
 Build the rest of the l-partitions W1

H-Level Set = {{{ 1, 2, 3, 4, 5 }, { 6, 7, 8 } ,
{ 10, 11, 9, 12 }} ; {{ 13, 14, 15 }} ; }

L2

L1

Overview

ParSy: Inspection and transformation for
parallelism

• Sympiler internals and ParSy

•H-Level inspection: The LBC algorithm

•H-Level transformation

Results

Conclusion

30

OUTLINE

31

H-LEVEL TRANSFORMATIONS

H-Level:

for(I1) {

…

for(In(I1)) {

Atomic:

c /= a[idx(I1,...,In)];

}

}

for (every l−partition l) {

#pragma omp parallel for private(pVars)

for (every w−partition w) {

for (every v ∈ HLevelSet[l][w]) {

I1 = v

…

for(In(I1)) {

#pragma omp atomic

c /= a[idx(I1,...,In)];

}

}}}

Internally annotated code Transformed with H-Level

Hierarchical Level (H-Level) transformation transforms
ParSy’s internally annotated code using the H-Level set to generate
parallel code.

H-Level set

32

THE PARSY-GENERATED CODE FOR CHOLESKY

H-Level:

for (int i=0; i<blockNo; ++i){

b1 = block2col[i]; b2 = block2col[i+1];

f = A(:,b1:b2);

// Update phase

for(block r=0 to i-1 L(i,r)!=0){

f-=GEMM(L(b1:n,r),transpose(L(i,r)));

}

// Diagonal operation

L(b1:b2,b1:b2)=POTRF(f(b1:b2));

// Off-diagonal operations

for(off-diagonal elements in f){

L(b2+1:n,b1:b1) =

TRSM(f(b1+1:n,b1:b2),L(b1:b2,b1:b2));

}}

for(every l-partition l < nlevels-1){

#pragma omp parallel for private(f){

for(every w-partition w){

for(every v ∈ HLevelSet[l][w]){

int i = v;

b1 = block2col[i];b2 = block2col[i+1];

f = A(:,b1:b2);

for(block r=0 to i-1 L(i,r)!=0){

f-=GEMM(L(b1:n,r),transpose(L(i,r)));

}

L(b1:b2,b1:b2)=POTRF(f(b1:b2));

for(off-diagonal elements in f){

L(b2+1:n,b1:b1) =

TRSM(f(b1+1:n,b1:b2),L(b1:b2,b1:b2));

} }}}

//Specialized code for the last l-partition.

Chol_Specialized(HLevelSet[nevels − 1][0]);

H-Level set

Internally annotated code

Transformed with H-Level

Overview

ParSy: Inspection and transformation for
parallelism

• Sympiler internals and ParSy

•H-Level inspection: The LBC algorithm

•H-Level transformation

Results

Conclusion

33

OUTLINE

Numeric and symbolic times are compared separately where
applicable; Target processor: Intel® Xeon® Platinum 8160 (Skylake);
Benchmarks: Suitesparse matrix collection

34

Name Application Order (103) Non-zeros
(106)

G3_circuit Circuit simulation 1585 127.3

StocF_1465 Computational fluid
dynamics problem

1465.1 1245

Hook_1498 3D mechanical problem 1498 1783.8

audikw_1 Structural problem 943.7 1473.1

bone010 Model reduction problem 986.8 1210.1

Emilia_923 Geomechanical model 923.1 1992

Fault_639 Contact mechanics 638.8 1275.4

nd24k 2D/3D problem 72 435.9

EXPERIMENTAL SETUP

35

PARSY VS LIBRARIES: CHOLESKY

0

100

200

300

400

500

600

700

G
FL

O
P/

s

MKL Pardiso (Metis) ParSy(Metis) Pastix (Scotch) ParSy(Scotch)

36

PARSY VS LIBRARIES: CHOLESKY

0

100

200

300

400

500

600

700

G
FL

O
P/

s

MKL Pardiso (Metis) ParSy(Metis) Pastix (Scotch) ParSy(Scotch)

2.2X

1.3X

1.6X

1.2X

1.6X

1.5X

1.4X

1.1X

1.0X

1.5X

1.6X

1.4X

1.4X

1.8X

1.7X

1.3X

0

1

2

3

4

5

6

7

8

9

10

G
FL

O
P/

s

MKL ParSy

37

PARSY VS LIBRARIES: TRIANGULAR SOLVE

0

1

2

3

4

5

6

7

8

9

10

G
FL

O
P/

s

MKL ParSy

1.2X

3.0X

2.4X
5.1X

3.0X 2.0X
2.6X

5.3X

38

PARSY VS LIBRARIES: TRIANGULAR SOLVE

39

INSPECTION OVERHEAD: CHOLESKY

Name MKL Acc Time / ParSy Acc Time Pastix Acc Time / ParSy Acc Time

G3_circuit 1.4 0.9

StocF_1465 1.4 0.9

Hook_1498 1.25 1

audikw_1 1.25 1

bone010 1.11 0.9

Emilia_923 1.4 1.25

Fault_639 1.25 1.25

nd24k 1.25 1

Acc Time = Symbolic analysis time + Numerical factorization

Overview

ParSy: Inspection and transformation for
parallelism

• Sympiler internals and ParSy

•H-Level inspection: The LBC algorithm

•H-Level transformation

Results

Conclusion

40

OUTLINE

 ParSy is a domain-specific code generator for transforming
sparse matrix codes for parallel multi-core processors.

ParSy uses H-Level inspection and transformations to create
coarse-level parallelism.

The ParSy-generated code outperforms state-of-the-art sparse
libraries Intel MKL Pardiso and PaStiX.

ParSy’s source code is publicly available from:

41

CONCLUSION

https://www.Sympiler.com/

